Evaluating CMR

Clinical Tools

Waist-to-hip Ratio (WHR)

WHR, Health Risk, and Intra-abdominal Fat

Page: Go to Previous Page 2 of 6 Go to Next Page

Waist-to-hip ratio (WHR) is an anthropometric measure commonly used to characterize regional adiposity. WHR is a crude estimate of the relative amount of abdominal fat: the higher your waist girth compared to your hip girth, the greater your proportion of abdominal fat. As early as the 1980s, several prospective epidemiological studies reported that WHR is a significant predictor of type 2 diabetes, (1) coronary heart disease, (2) and death (3, 4). A large number of studies have since replicated these initial findings, with some reporting that WHR was a stronger predictor of myocardial infarction (5) or mortality risk (6) than body mass index (BMI) or waist circumference alone. However, this observation is not seen consistently, as most studies report that waist circumference is an equivalent, if not a superior, measure of health risk (7-11) and mortality (12-14). WHR is also reported to have a similar relationship to intra-abdominal (visceral) fat as waist circumference and BMI (15-22). Consequently, as WHR provides no clear advantage in predicting health risk, it has been suggested that waist circumference may be a more clinically useful tool because it is easier to measure.

Previous Reference
Next Reference
1. Ohlson LO, Larsson B, Svardsudd K, et al. The influence of body fat distribution on the incidence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 1985; 34: 1055-8.
2. Ducimetiere P and Richard JL. The relationship between subsets of anthropometric upper versus lower body measurements and coronary heart disease risk in middle-aged men. The Paris Prospective Study. I. Int J Obes 1989; 13: 111-21.
3. Lapidus L, Bengtsson C and Lissner L. Distribution of adipose tissue in relation to cardiovascular and total mortality as observed during 20 years in a prospective population study of women in Gothenburg, Sweden. Diabetes Res Clin Pract 1990; 10 Suppl 1: S185-9.
4. Larsson B, Svardsudd K, Welin L, et al. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br Med J (Clin Res Ed) 1984; 288: 1401-4.
5. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 2005; 366: 1640-9.
6. Price GM, Uauy R, Breeze E, et al. Weight, shape, and mortality risk in older persons: elevated waist-hip ratio, not high body mass index, is associated with a greater risk of death. Am J Clin Nutr 2006; 84: 449-60.
7. Pouliot MC, Després JP, Lemieux S, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 1994; 73: 460-8.
8. Afghani A, Abbott AV, Wiswell RA, et al. Central Adiposity, Aerobic Fitness, and Blood Pressure in Premenopausal Hispanic Women. International Journal of Sports Medicine 2004; 25: 599-606.
9. Haffner SM. Obesity and the metabolic syndrome: the San Antonio Heart Study. Br J Nutr 2000; 83 Suppl 1: S67-70.
10. Ohrvall M, Berglund L and Vessby B. Sagittal abdominal diameter compared with other anthropometric measurements in relation to cardiovascular risk. Int J Obes Relat Metab Disord 2000; 24: 497-501.
11. Rissanen P, Hamalainen P, Vanninen E, et al. Relationship of metabolic variables to abdominal adiposity measured by different anthropometric measurements and dual-energy X-ray absorptiometry in obese middle-aged women. Int J Obes Relat Metab Disord 1997; 21: 367-71.
12. Visscher TL, Seidell JC, Molarius A, et al. A comparison of body mass index, waist-hip ratio and waist circumference as predictors of all-cause mortality among the elderly: the Rotterdam study. Int J Obes Relat Metab Disord 2001; 25: 1730-5.
13. Bigaard J, Frederiksen K, Tjonneland A, et al. Waist and hip circumferences and all-cause mortality: usefulness of the waist-to-hip ratio? Int J Obes Relat Metab Disord 2004; 28: 741-7.
14. Wang Z and Hoy WE. Waist circumference, body mass index, hip circumference and waist-to-hip ratio as predictors of cardiovascular disease in Aboriginal people. Eur J Clin Nutr 2004; 58: 888-93.
15. Kamel EG, McNeill G, Han TS, et al. Measurement of abdominal fat by magnetic resonance imaging, dual-energy X-ray absorptiometry and anthropometry in non-obese men and women. Int J Obes Relat Metab Disord 1999; 23: 686-92.
16. Bonora E, Micciolo R, Ghiatas AA, et al. Is it possible to derive a reliable estimate of human visceral and subcutaneous abdominal adipose tissue from simple anthropometric measurements? Metabolism 1995; 44: 1617-25.
17. Ross R, Leger L, Morris D, et al. Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol 1992; 72: 787-95.
18. Ross R, Shaw KD, Rissanen J, et al. Sex differences in lean and adipose tissue distribution by magnetic resonance imaging: anthropometric relationships. Am J Clin Nutr 1994; 59: 1277-85.
19. Ross R, Rissanen J and Hudson R. Sensitivity associated with the identification of visceral adipose tissue levels using waist circumference in men and women: effects of weight loss. Int J Obes Relat Metab Disord 1996; 20: 533-8.
20. Seidell JC, Bjorntorp P, Sjostrom L, et al. Regional distribution of muscle and fat mass in men--new insight into the risk of abdominal obesity using computed tomography. Int J Obes 1989; 13: 289-303.
21. van der Kooy K, Leenen R, Seidell JC, et al. Waist-hip ratio is a poor predictor of changes in visceral fat. Am J Clin Nutr 1993; 57: 327-33.
22. Han TS, McNeill G, Seidell JC, et al. Predicting intra-abdominal fatness from anthropometric measures: the influence of stature. Int J Obes Relat Metab Disord 1997; 21: 587-93.