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Insulin resistance is defined as reduced insulin action in metabolic and vascular target tissues. 
Whereas it is widely recognized that insulin resistance is a key pathogenic factor in the development 
of diabetes and cardiovascular disease (CVD), its etiology remains elusive. In this short report, we 
will summarize our research efforts toward establishing the potential mechanisms responsible for 
promoting insulin resistance in key metabolic tissues.  

Inflammation as a cause of insulin resistance 
While obesity-linked diabetes and CVD are known to be chronic inflammatory disorders, the 
underlying mechanisms by which inflammation promotes these metabolic diseases remain poorly 
understood. Studies in my laboratory identified inducible nitric oxide synthase (iNOS) as a key 
inflammatory mediator in obesity, causing insulin resistance in skeletal muscle [1-4] (Figure 1) and 
impairing insulin action in the liver through inhibition of adiponectin secretion by adipose tissue [5] 
(Figure 1). Studies by other groups have confirmed the role of iNOS in obesity-linked insulin 
resistance [6-8] and further indicated that iNOS induction in blood vessels is also involved in 
mediating vascular dysfunction in obesity [8]. The underlying cause of inflammation in obesity 
remains poorly understood, but one theory is that it lies within the origin of fat cells. Indeed, 
metabolic and immune pathways have evolved to be closely linked and interdependent. The finding 
that obesity is characterized by macrophage accumulation in adipose tissue [9, 10] and that 
macrophages and fat cells share the expression of multiple genes has added another dimension to our 
understanding of the development of adipose tissue inflammation in obesity. The role of immune 
cells in promoting inflammation in obesity has also recently been confirmed in humans [11-13]. 
What remains to be determined is how obesity promotes an inflammatory process not only in 
adipose tissue, but also in skeletal/cardiac muscles and liver. In this regard, recent studies point 
toward hypoxia as a key triggering event in the development of an inflammatory state in obesity [14-
16]. However, this remains to be confirmed and better characterized, especially in human obesity. 
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Nutrient sensing through the mTOR pathway promotes insulin resistance 
Recent studies by our group and others suggest that nutrient satiation promotes insulin resistance by 
activating the protein kinase mTOR pathway, a sensing complex that integrates nutrient and 
hormonal signals [17-21]. We 
first proposed that mTOR 
operates a negative feedback 
loop by phosphorylating the first 
substrate of the insulin receptor, 
IRS-1, on multiple serine 
residues, uncoupling IRS-1 from 
the activation of 
phosphatidylinositol 3-kinase 
(PI3K) and Akt, two effectors of 
insulin’s metabolic actions [20] 
(Figure 1). This metabolic 
feedback loop has been found in 
myocytes [20, 22], adipocytes 
and hepatocytes [17, 23] as well 
as in liver and muscle tissues of 
rats [17], suggesting that the 
mTOR pathway plays a major 
role in the regulation of glucose 
homeostasis. Importantly, we 
and others have shown that 
mTOR and its effector S6K1 are 
“overactivated” in skeletal 
muscle, liver and adipose tissue 
of both genetic and dietary 
animal models of obesity-linked 
insulin resistance [17, 24]. We 
have further shown that the 
mTOR pathway negatively 
modulates insulin’s metabolic 
actions in skeletal muscle and 
adipocytes of healthy subjects 
[17, 22]. We have also recently 
identified that serine 1101 in the 
IRS-1 protein is a molecular 
target of S6K1 in the liver of 
obese animals and in skeletal 
muscle during infusion of human 
subjects with amino acids [25]. 
Whether increased activation of 
S6K1 is a common feature of 
human obesity and insulin 

Figure 1:  Integrative view of molecular pathways implicated in the 
pathogenesis of insulin resistance in skeletal muscle 

Detailed legend of Figure 1 
Proinflammatory cytokines (TNFα, IL-1, IL-6 and IFNγ) are released from 
adipocytes or infiltrating macrophages in adipose tissue or skeletal 
muscle. This leads to cytokine signalling events, including activation of c-
jun N-terminal kinase (JNK) and IkB kinase (IKK). IKK and JNK can 
promote insulin resistance by increasing inhibitory serine phosphorylation 
of IRS-1, a key element of the insulin signalling cascade, or through the 
transcriptional activation of inflammatory genes such as iNOS. iNOS 
activation leads to high levels of nitric oxide (NO) production and 
formation of the highly reactive derivative peroxynitrite (ONOO-). NO 
and ONOO- are thought to impede insulin signalling by s-nitrosylation or 
nitration of IRS-1, PI3K and/or Akt, which are key to glucose transporter 
4 (GLUT4) translocation to the cell surface and activation of glucose 
transport in the myocytes. Prolonged hyperinsulinemia and nutrient 
satiation also activates the mTOR/S6K1 pathway, causing insulin 
resistance by enhancing phosphorylation of IRS-1 on multiple serine 
residues. Conversely, activation of AMP-activated protein kinase (AMPK) 
by physical exercise or pharmacological means (TZD and metformin) 
improves insulin action through inhibition of iNOS as well as mTOR/S6K1 
signalling. AMPK can also increase glucose transport by triggering 
GLUT4 translocation and activating the cell surface glucose transporters. 
The protein tyrosine phosphatases (PTPs) PTP1B, LAR and SHP-1 may 
also mediate insulin resistance by dephosphorylation of key tyrosine 
residues within the insulin receptor 
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resistance is currently unknown, but IRS-1 (Ser-1101) and S6K1 (Thr-389) may represent future 
diagnostic tools in order to predict and design therapeutic treatments.  

AMPK: turning on metabolism while turning off insulin resistance 
AMPK is a member of a metabolite-sensing protein kinase family that acts as a fuel gauge 
monitoring cellular energy levels [26, 27]. When AMP kinase “senses” decreased energy stores, it 
acts to switch off ATP-consuming pathways and switch on alternative pathways for ATP 
regeneration. AMPK is activated by exercise/muscle contraction [28] but also by several classes of 
drugs that are currently used for treatment of diabetes and CVD, including thiazolidinedione (TZD), 
and that activate proliferator-activated receptor gamma (PPARg). We have recently reported that 
PPARg agonists inhibit iNOS induction in macrophages, myocytes and adipocytes through 
activation of AMPK [29] (Figure 1). These studies indicate that AMPK is a master switch that turns 
on metabolic pathways while turning off inflammation in insulin target tissues and macrophages. 
Interestingly, AMPK may also improve insulin sensitivity by blunting the activation of the 
mTOR/S6K1 pathway (Figure 1). Indeed, activation of AMPK by the pharmacological activator 
AICAR or by the anti-diabetic drug metformin inhibits mTOR/S6K1 in various cell types [30, 31]. 
AMPK may therefore represent a key therapeutic target since its activation can blunt both 
inflammation and nutrient sensing signals believed to play a key role in promoting insulin resistance 
in obesity.   

SHP-1: a new target for the treatment of insulin resistance? 
Because tyrosine phosphorylation is key to insulin signal transduction, protein tyrosine phosphatases 
(PTPs) are prominent candidates to negatively regulate insulin action. Previous studies have shown 
that the PTPs PTP1B and LAR (leukocyte related-antigen) are negative regulators of the insulin 
receptor kinase in liver and peripheral insulin target tissues [32-34]. PTP1B-deficient mice are 
leaner, exhibit increased energy expenditure and are protected from insulin resistance in the liver and 
skeletal muscle [35, 36]. Neuron-specific PTP1B KO also increased leptin sensitivity and improved 
glucose homeostasis, suggesting that PTP1B regulates body mass and adiposity primarily through 
actions in the brain [37].  
 
We have recently identified the PTP SHP-1 as a novel inhibitor of insulin receptor signalling in liver 
and skeletal muscle [38]. We found that mouse models with a functionally deficient SHP-1 protein 
are remarkably glucose tolerant and insulin sensitive for glucose metabolism as a result of increased 
insulin signalling to the IRS/PI3K/Akt pathway in both liver and muscle tissues. These findings 
indicate that SHP-1 plays an important role in the regulation of insulin signalling in liver and muscle. 
Preliminary data also demonstrates that SHP-1 is expressed in adipose tissue and modulates lipid 
metabolism and adiposity (A. Marette, unpublished data) but the mechanisms involved remain 
poorly understood. It will be important in the near future to clarify the role of SHP-1 in controlling 
insulin sensitivity in insulin-resistant states and investigate whether this PTP is a potential target for 
anti-diabetic drugs.  

Concluding remarks 
Given the prevalence of obesity worldwide and the increase in associated health complications such 
as diabetes and CVD, the need for a mechanistic understanding of obesity-related insulin resistance 
remains a major research priority. We also need to speed up the discovery of new biological markers 
and diagnosis tools to assess insulin resistance and predict its development in populations at risk. 
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Finally, it is critical to find novel therapeutic targets to improve the pharmacotherapy of obese 
diabetic subjects, which is a crucial measure when lifestyle modifications (e.g., physical activity, 
diets) fail to achieve the therapeutic goals. 
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